G6-M1 - Topic C

G6-M1-L16: Throughout the early lessons of this topic, continue to do short review fluency activities that address Topic B, e.g. Project a blank table and a coordinate plane with coordinates plotted. Using the coordinates, fill in the table.

G6-M1-L17: Consider using Friendlier Numbers for Example 1, e.g. 265:5 instead of 434:7.

G6-M1-L18: Stations are recommended in this lesson. I have some reservations about stations in mathematical instruction. See essay below:

http://www.teacherbilldavidson.com/essays/circling-around-the-subject

G6-M1-L19-20: Throughout this topic, consider doing Anticipatory Fluency to prepare students for Topic D. In Topic D, students will need to write fractions with denominators that are factors of 100 as percentages. Consider the following progression, moving on to a new phase of complexity after master.

Phase 1: Factors of 100: $10 x_{\neq}=100,50 x_{\neq}=100,2 x_{\ldots}=100,20 x_{_}=100$, $5 \times$ \qquad $=100,4 \mathrm{x}$ \qquad $=100,25 \mathrm{x}$ \qquad $=100$

Phase 2: Equivalent Unit Fractions: $\frac{1}{2}=\overline{100}, \frac{1}{4}=\overline{100}, \frac{1}{50}=\overline{100}$, etc.
Phase 3: Equivalent Non-unit Fractions: $\frac{3}{50}=\overline{100}, \frac{7}{25}=\overline{100}, \frac{5}{5}=\frac{}{100}$, etc.

G6-M1-L21: When working with conversions, give students access to simple unit conversions without making it too easy for them to reference. For example, place a conversions poster in the back of the classroom so it's inconvenient to look at. If students need to stretch \& turn around to locate the poster, there's a chance that they will try \& recall the conversion before doing so. If the chart is positioned directly in front of them (e.g.next to the board) then they are unlikely to do so.

G6-M1-L22: The exploratory challenge doesn't justify fifteen minutes of class time. Consider doing an alternative physical activity in class, e.g. the time needed to do 10 jumping jacks.

G6-M1-L23: For remediated Speed Practice Problems, see attached.

Distance	Speed	Time
	$10 \mathrm{~km} / \mathrm{h}$	8 h
12 m	$3 \mathrm{~m} / \mathrm{s}$	
56 km		14 h

A train traveled 320 miles in 4 hours. Find its speed in mi/h.

Tai walked 8 miles at a speed of $4 \mathrm{mi} / \mathrm{h}$. How long was he walking?

A rocket traveled at a speed of $60 \mathrm{mi} / \mathrm{sec}$. How far did it travel in 5 seconds?

Teacher Cristobal went for a 120 -mile drive. He drove 50 miles in the first 2 hours, and the remainder in the next 4 hours. What was his average speed for the entire journey?

G6-M1-L16 Subset

Round to the nearest ten.

1) $63 \approx$
2) $963 \approx$
3) $1,963 \approx$
4) $79 \approx$
5) $579 \approx$
6) $3,579 \approx$
7) $97 \approx$
8) $297 \approx$
9) $47,297 \approx$

Round to the nearest hundredth.
10) $1.963 \approx$
11) $3.579 \approx$
12) $47.297 \approx$

Solve.
13) $15 \div 3=$
14) $\frac{15}{3}=$
15) $\frac{15}{5}=$
13) $16 \div 8=$
14) $\frac{16}{8}=$
16) $\frac{16}{2}=$

Mr. Robata walks 16 miles in 4 hours.
17) What is his unit rate?
18) What is his rate unit?

A coffee shop sells 360 cups of coffee in 3 hours.
19) What is the unit rate?
20) What is the rate unit?

G6-M1-L17 Subset

Find the missing numerator.

1) $\frac{4}{1}=\frac{}{3}$
2) $\frac{40}{1}=\frac{-}{3}$
3) $\frac{40}{1}=\frac{-}{7}$
4) $\frac{2}{3}=\frac{8}{-}$
5) $\frac{20}{3}=\frac{80}{}$
6) $\frac{20}{7}=\frac{80}{}$

Find the missing numerator or denominator.
7) $\frac{1}{10}=\frac{}{30}$
8) $\frac{1}{10}=\frac{}{90}$
8) $\frac{1}{10}=\frac{7}{-}$
10) A train travels a speed of 30 miles per hour. How far does it travel in 5 hours?
11) During a hurricane, rain fell at 3 inches an hour for 7 hours. How many inches of rain accumulated altogether?

G6-M1-L19 Subset

Vehicle 1

Gallons of Gas	2	4	6
Number of Miles	100	200	300

How many miles per gallon of gas does Vehicle 1 get?

How many miles is Vehicle 1 likely to travel on 10 gallons of gas?

How many gallons of gas does it take Vehicle 1 to travel 450 miles?

Vehicle 2

How many miles per gallon of gas does Vehicle 2 get?

How many miles is Vehicle 1 likely to travel on 3 gallons of gas?

How many gallons of gas does it take Vehicle 1 to travel 210 miles?
$c=2.11 s$, where c represents the cost in dollars and s represents the number of sodas. Fill in the table below.

Sodas	1	2	4	100
Cost (\$)				

Number of cracker boxes	3	6	9	12
Cost (\$)	9	18	27	36

1) What is the cost of $\mathbf{1}$ box of crackers?
2) What is the cost of 5 boxes of crackers?
3) What is the cost of 90 boxes of crackers?

The table below shows the amount of money Brian earns working at a corner store.

Number of hours worked	2	4	6	8
Money earned (\$1)	25	50	75	100

How much does Brian earn per hour?

G6-M1-L21 Subset

1) $1 \mathrm{ft}=$ \qquad in
2) $2 \mathrm{ft}=$ \qquad in
3) $4 \mathrm{ft}=$ \qquad in
4) $1 \mathrm{yd}=$ \qquad ft
5) $2 \mathrm{yd}=$ \qquad ft
6) $3 \mathrm{yd}=$ \qquad ft
7) $10 \mathrm{yd}=$ \qquad ft
8) $1 \mathrm{~m}=$ \qquad cm
9) $7 \mathrm{~m}=$ \qquad cm
10) 1 km = \qquad m
11) $25 \mathrm{~km}=$ \qquad m
12) $16 \mathrm{oz}=$ \qquad lb
13) $160 \mathrm{oz}=$ \qquad lb
14) $5,280 \mathrm{ft}=$ \qquad mi

G6-M1-L22 Subset

1) In the equation $d=r^{*} t$, what does each letter stand for?
2) A train traveled at a constant speed of 50 miles per hour for a seven-hour journey. How far did the train travel?
3) A triathlete ran 21 miles in 3 hours. How fast did they run?
4) Cassidy drove 280 miles at an average speed of 70 miles per hour. For how long did Cassidy drive?

G6-M1-L23 Subset

1) In the equation $d=r^{*} t$, what does each letter stand for?
2) A train traveled at a constant speed of 30 miles per hour for a five-hour journey. How far did the train travel?
3) Cassidy drove 280 miles at an average speed of 70 miles per hour. For how long did Cassidy drive?
4) Owen ran 16 miles in 4 hours. Naia ran 15 miles in 3 hours. Who ran faster?
